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GEAR FATIGUE CRACK DIAGNOSIS BY VIBRATION ANALYSIS USING
EMBEDDED MODELING
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Rensselaer Polytechnic Institute

110 8th St., Troy, NY 12180
E-mail: lic3(Thrpi.edu

Abstract: This paper describes an embedded modeling methodology for identifying gear
meshing stiffness from measured gear angular displacement or transmission error. An
embedded model integrating a physical based model of the gearbox and a parametric
representation, in the form of truncated Fourier series, of meshing stiffness is established.
A solution method is then used to find the meshing stiffness that minimizes the
discrepancy between model output and the measured output. Both simulation and
experimental studies were conducted to evaluate if identified tooth meshing stiffness can
reveal a tooth crack more effectively.

Key words: Crack; Embedded model; Gear diagnosis; Meshing stiffness; Torsional
vibration; Transmission error.

INTRODUCTION

Figure 1 shows a dynamic model of a single-stage gearbox where 0 represents angular
displacement, I represents inertia, T represents torque, and km represents meshing
stiffness between the two gears. Even if the gears are perfect, the meshing stiffness varies
periodically as the number of teeth in contact and the contact point change. This non-
constant meshing stiffness becomes a parametric excitation for gear vibration during gear
rotation. Localized gear faults such as cracked or fractured teeth, that affect only a few
teeth, introduce variations in meshing stiffness which, in turn, increase amplitude and
phase modulations in gear vibrations.

To detect and assess tooth crack, existing gear fault diagnostic algorithms accentuate or
extract magnitude and/or phase modulations from gear vibrations. Dalpiaz et al. [1] gave
references for a number of early and modem gear diagnostic algorithms and Choy et al.
[2] gave references on Wigner-Ville Distribution (WVD) and some statistical based
methods including FM4, NA4 and NB4.

There are limitations for vibration based gear diagnostic methods. Vibrations are
secondary effects in the sense that they are dynamic responses of a gearbox excited by
meshing stiffness and other excitations. The effect of irregular meshing stiffness
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associated with a cracked tooth is filtered by the gearbox dynamics and contaminated by
other vibrations. Even when a cracked tooth is revealed by detectable amplitude/phase
modulations, there is no straightforward relationship between the modulation amplitude
and the crack size which is necessary for severity assessment and residual life prognosis.

In order to alleviate these limitations, this study has developed a method to identify
meshing stiffness from measured gear vibration.

PROPOSED METHOD

The goal of this study is to establish the utility of embedded modeling method [3] to
identify the meshing stiffness which is more directly related to the fault than vibration. A
summary of the embedded modeling method is provided below.

Embedded modeling method: Let's say that the dynamics of a real system is described
as

i = F(x,f)

s = h(x) (1)

where x is the system state vector, f is the forcing function, s, also a vector, stands for
system physical variables that are measured by transducers, h stands for the function
relating the state and the measurable, s. It is also assumed thatx, and s are n, and m
dimensional, respectively. Let's further assume that the model of the system takes the
following form

k = F(.i,f;ow)
• F(2)

S= h(i)

where the circumflex stands for approximation, wo (p-dimensional) stands for the vector
of model parameters that, at least, is partially unknown. Note that h is assumed to be
known here to simplify the discussion.

One can show that model output 9 will approach the real system output, s if F
approaches F provided the initial error is small. Therefore, it is natural to find the P that
can minimize the difference between system and model outputs, i.e.,

1 if

E = Je Tedt (continuous) or
"2", 

(3)LM

E = - e e, (discrete)
2 j=1
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where e = s - s, and to and tr define the interval. Equation (3) is the so-called objective
function.

Using nonlinear programming, Equation (3) can be minimized by an iterative procedure
starting from an initial guess

09k+T = 0)k _akgk (4)

where gk is the gradient of E at (k, Rk is a positive-definite square matrix and

adefines the step size. The product of gk and Rk gives the search direction. Using

different R matrix yields different gradient-based updating schemes such as steepest
descend and Newton's method with different efficiency, robustness and computation
cost. This study used Levenberg-Marquardt method for its robustness.

To obtain the gradient one takes derivative of E with respect to 0) which yields

g ei' =_ _09 <s,, (5)

Note from above equation that gradient g is calculated from e and an mxp Jacobian

matrix that contains the partial derivative of .9 with respect to o). The Jacobian is
denoted as J hereinafter. Taking derivative of 9 with respect to o) yields J as

J d (dhjTro(6
J= d9 d, )T &- (6)

However, the partial derivative of i with respect to (o is not readily available. Let's take
partial derivative of the model or Eq. (2) with respect to C0 to obtain the so-called
sensitivity equation

dc ) 0 o (7)
=j/t = P + P.(7)

where = & / do) ; J' and F" are the partial derivatives of P with respect to x and o),

respectively. Solution of Eq. (7) is the needed & which has an initial value as a zero

matrix because the initial condition, i(t 0 ) = x0, does not depend on the parameters of the

model.

Formulating an embedded model for a gearbox : The model of a simple spur-gear
transmission can be represented by a collection of masses, springs, and dampers as in
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Figure 2 [4].

The non-linear equation of motion can be written as:

iM 6 M + C, (6M - 6, ) +/K, (0, - O, ) = TM
J',6 + C, (6 - 6,) + Ks (0, - 0,,) + C (t)(R, (R,6, - R, 2

6 )) + K, (t)(R, (Rbo, - Rb120)) = Tf (0

J2A2 + C,1 (62 - 6
L) + K,, (6, - L) + C, (t)(R(R,,O, - RbO,)) + Kg (t)(Rn1 (Rn,0 - R,O,)) = T72 (t)

JAe, +Csl(0L -62)+K,,(0, -0)=_-TL (8)

where 0 M, 01, 02 , and 0, represent the rotations of the motor, the pinion and the gear,
and the load;JM, J,, J2, and JL represent the mass moments of inertia; CAI, Cs2, and

C, are damping coefficients of the shafts and the gear mesh; K,,, Ks,, and Ký are

stiffness of the shafts and the gear mesh; TM, T, , T(t), and T,2(t) are motor and load

torques and frictional torques on the gears; Rb, and Rb2 are base circle radii of the gears.

The meshing stiffness, i.e., Kg is assumed to be periodic. For a good gear that has
regularly-spaced identical teeth, the meshing stiffness is largely repeated from one tooth
to the next. In this case, a truncated Fourier series with a fundamental frequency of tooth
meshing is used to represent K9. (Note that Eq. (9) is formulated as a function of time.
While it is more accurate for it to be a function of angular position, it is more convenient
to have it as a function of time along which the gearbox dynamics evolves.)

Ký(t)= -• + X(a, cos(27mf, t)+b, sin(2zaf,,t)) (9)

2 _

where N is the number of harmonics included.

On the other hand, a faulty tooth gives a meshing pattern that is repeated only once a
revolution. Therefore, a Fourier series with a fundamental frequency as the rotation
frequency is more suitable.

Kg(t) = (I + X[ck cos(2Zdsft) + d, sin(21rkft)])K, (t) (10)
k=1

where K is the number of harmonics considered. Equation (9) can be considered as a
special case of Eq. (10) which can be used for both good and faulty gears. However, to
cover the same number of meshing harmonics, Eq. (10) uses more terms than Eq. (9).
This means more unknowns and therefore higher computational cost.

The damping, C., is assumed to be a function of the meshing stiffness

C(t) = 24 K (t)R Rbi /( , + R,2
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where ý is the damping ratio [4].

To identify gear meshing stiffness from gear vibration, one takes the gearbox model, i.e.,
equations (8) - (11), and solves for Fourier coefficients a, and bi or e and d in the way
wi is solved as described in the last section.

SIMULATION STUDY

A gearbox dynamic simulator, DANST (Dynamic Analysis of Spur Gear Transmissions)
was extended to simulate a good gearbox and another with a cracked tooth. Given inputs
such as geometry of the tooth and crack, a Finite Element Method (FEM) program is first
used to compute individual tooth stiffness. Then, DANST computes meshing stiffness by
superimposing the stiffness of teeth according to gear meshing kinematics. Using
numerical methods, the gearbox governing equation (8) is then solved for a complete
rotation of the gear repeatedly until the initial condition that results in an identical
terminal condition is found.

Broken lines in Figure 3 show the meshing stiffness and its corresponding transmission
error of a good gearbox calculated by the DANST. Figure 4 shows the same for a
gearbox with a crack in tooth 13.

To identify the meshing stiffness from the transmission error of the simulated gearbox,
the gearbox model Eq. (8) is formulated into the state space form (2).

x = F(x,u;co)
x 2

(TM - cQ (x2 - x4 )- Ks, (x, - x3 ))/JM

X4

a4 1

x 6

a61

X 7

-(-T1 - Cs2(X8 - X6) -K,2(x7 - X1))/ J1,

a4l = Tr-l Wt C,1 (X4 - X2 ) - K s, (X3 - X1 )

- Cg (t)(Rbl (RbIx 4 - Rb2 x6 )) - Kg (t)(Rbl (Rb6 x3 - Rb2x 5 ))1I J1

a 61 = [Tf2 (t) - C2 (x 6 - x 8 ) - K,2 (x5 - x 7 )

- Cg (t)(Rb2 (Rb2x 6 - RbI X4 )) - Kg (t)(Rb2 (Rb2 X5 - Rb, X3 ))] / J 2

S= h(x) = Rb6 X 3 - Rb2x 5  (12)
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where X=[0M,0M,0,0,02,02,0L,0,], u is the external excitation, and Kg takes the form
of (9) or (10) depending on if a tooth crack is suspected (or one can use equation (10) all
the time at the expense of higher computational cost in the case of a good gear.)

The sensitivity equations for (12) are then derived so that gradients can be calculated to
carry out a search for optimal value of Fourier coefficients. Solid lines in Figures 3 and 4
show the meshing stiffness found by the embedded modeling method for good and
cracked gears, respectively. The 5X errors are shown in the bottom of each figure. It is
obvious that the meshing stiffness is accurately identified in both cases.

EXPERIMENTAL STUDY

Figure 5 shows the gear test rig. It is consisted of a 40 HP variable speed motor and a 75
HP generator between which a testing gearbox is installed. Transducers are available to
measure vibration, input torque, and transmission error with a resolution of 7* 10-5 rad.
Additionally, crack gauges and bore scopes are installed to track the evolution of gear
faults such as tooth crack and pitting. The 10 HP single-stage spur gearbox used in this
study contains a pinion of 23 teeth, and a gear of 54 teeth. The nominal pinion speed is
450rpm and the maximum input torque is 920in-lb. In a test, a small notch was made
with wired electrical discharge machining at the root of tooth 17 to create a stress
concentration which eventually led to a propagating crack. The transmission errors
measured when the tooth is healthy and when it has a crack of 0. 18 inches are shown in
Figure 6 in solid lines. Notch filtering is then applied to remove the once-per-revolution
frequency due to eccentricity.

Figures 7b and 7d show the meshing stiffness identified by the proposed method and their
corresponding transmission error in Figures 7a and 7c along with the measured
transmission error. When the gear is good, the identified meshing stiffness (7b) is
roughly repeated from tooth to tooth as expected. Because of the cracked tooth, the
transmission error in Figure 7c has a clear transient around 1,100 along the horizontal
axis. This transient becomes even more pronounced in the meshing stiffness. Such
increased sensitivity will enable one to detect the crack at an early stage.

CONCLUSIONS

This paper describes the development of an embedded model for a gearbox, which, in
turn, enabled the identification of gear meshing stiffness from its vibration. When
applied to a simulated gearbox, the method resulted in accurate identification of meshing
stiffness which gives an accurate account of the state of gear. When applied to real data
taken from a gear test, the meshing stiffness appears to be more sensitive to the crack
than the vibration. In addition to increased sensitivity, the ability to identify meshing
stiffness makes it possible to determine the physical size of a crack which is needed for
severity assessment and residual life prediction.
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Figure I. Gear dynamic model
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Figure 2. (a) A spur gear system, (b) A model of the gear system

(a) The meshing stiffness K9 (t) (b) The transmission error.

Figure 3. Meshing stiffhess and simulated transmission error of a good gear
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(a) The meshing stiffniess Kg, (t) (b) The transmission error.

Figure 4. Meshing stiffniess and simulated transmission error of a cracked gear

Figure 5. The gear test setup

A5

(a)nomal gear 'oerr (b) cracked gear

Figue 6 Trasmisionerrr (measured, --filtered)
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(a) Transmission error (gear is good) (b) Identified meshing stiffhess

(c) Transmission error (tooth has a .18" crack), (d) Identified meshing stiffhess

Figure 7. Transmission errors and meshing stiffhess of the test gear (-experimental, --

identified, 0.5X error)
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